
13 December 1998

DIS Java VRML Entity State Protocol Data Unit Smoothing

by

Scott David Heller, LT USN
Naval Postgraduate School

Reference:
(a) P1278.1 IEEE Standard for Distributed Interactive Simulation --
Communication Service and Profiles, September 1995. Appendix B sections 3.8
and 3.9.

Background:

Currently when an update occurs to the location and/or orientation of an entity there is a
discontinuous jump from position P0 to position P1 and from orientation, O0 to O1. This
discontinuous motion can be visually disconcerting. To improve the quality of the visual
experience smoothing can be used. Smoothing will sacrifice some accuracy of position
and orientation at the time of EspduUpdate receipt, but will greatly reduce the
discontinuous motion due to a EspduUpdate rate that is much slower than the screen
update rate.

Methodology:

This smoothing will be accomplished using the following formula as specified in the
IEEE Standard for Distributed Interactive Simulation -- Communication Service and
Profiles:

Xi = X0 + X f − X0() i
p



 


Where Xi is the current DR position,

X0 is the previous update position dead reckoned to the current time,
Xf is the most recent update position dead reckoned to the current time,
i is (tf - t0), or the current time minus the time of current update.
p = (average update delta)

Figure 1

Smoothing is best thought of as the result of the linear interpolation between the
deadreckoned positon of the previous entity state pdu and the deadreckoned postion of
the current entity state pdu. Both Espdu(s) are deadreckoned to the current time.

In order to perform this linear interpolation a ground truth must be esablished for the time
of the previous update and the time of the current update. The time used is when
EspduTransform is called. This introduces an error by the amout of latentacy in the
network and in the local applicaion, however for the purposes of visual display these
errors can be considered negligible.

In order to minimize the effects of variable display frame rates and pdu update rates an
average of each is used to calculate the time between pdu updates. Originally this time
was calculated by a call to the browser to get the frame rate. In this iteration of
EspduTransform, the local system clock is used via a Timer class that can be reset to zero
and returns the number of seconds since reset as a float.

The smoothing algorithm can be turned off via a call to toggleSmoothing(). Smoothing of
acceleration may be enabled by setting SMOOTH_LINVELOCITY to true in the source
code and recompiling. A set function was not provided since this feature provides no
noticable benifts. The reason smoothing the velocity does not improve the representation
is that the smoothing algorithm already smooths between the previous and current dead
reckoning tracks. Each dead reckoning track is calculated using the appropriate
velocities, so the effects of these velocities are already accounted for. I left in the boolean
switch just in case someone wanted to experiment with it a bit.

The next page shows EspduTransform class variables and methods at the time of this
work.

Xi

previous DR
track

Most current
DR track

Actual Path
Followed

X0

Xf

previous
update

current
update

